
 

M1 Build
TRAINING CONFERENCE 2015

Published July 2015

www.motec.com



INDEX 2015 Training Reference
M1 Build

M1 Build   ........................................................................................ 0
Content and Purpose   ...................................................................... 1
M1 Build Software   ......................................................................... 2
Overview   ........................................................................................ 3
Starting M1 Build   ........................................................................... 4
Open a Project   ................................................................................ 5
Start a Project   ................................................................................ 6
Create a Project   ............................................................................. 7
Setting Up a New Project   ............................................................... 8
Getting Around M1 Build   ................................................................ 9
Settings Tab	 (Page 20) ...................................................... 10
Modules Tab	 (Page 22) ...................................................... 11
Data Types Tab	 (Page 24) ...................................................... 12
Objects Tab	 (Page 30) ...................................................... 13
Schedule Tab	 (Page 41) ...................................................... 14
Diagnostics Tab	 (Page 43) ...................................................... 15
Security Tab	 (Page 45) ...................................................... 16
Classes Tab	 (Page 51) ...................................................... 17
Library Tab	 (Page 52) ...................................................... 18
Keywords Tab	 (Page 53) ...................................................... 19
Working Example    ........................................................................ 20
Coding in M1 Build   ....................................................................... 21
Creating a Time Counter   .............................................................. 22
Naming Conventions   .................................................................... 23
Create a Function   ......................................................................... 24
Create the Code to Run the Counter   ............................................. 25
Writing the Code    ......................................................................... 26
Brackets   ....................................................................................... 27
Incrementing a Value   ................................................................... 28
Formatting the Code   .................................................................... 29
If Else Statements   ........................................................................ 30
Setting a Channel to a Value   ........................................................ 31
Using Comments  ........................................................................... 32
Validating Your Code   .................................................................... 33
Validation Errors   ........................................................................... 34
Scheduling the Event   ................................................................... 35
Grouping  ....................................................................................... 36
Validating Your Code 2   ................................................................. 37
Sending the Package to an ECU   ................................................... 38
Result      ........................................................................................ 39
Coding in M1 Build Part 2   ............................................................ 40
Data Types  (Page 20) .................................................................... 41
Create a Custom Enumeration   ...................................................... 42
Create a Parameter   ...................................................................... 43
Set the Data Type   ......................................................................... 44
Coding in M1 Build Part 3   ............................................................ 45
Implement User Defined Patterns    ................................................ 46

Signal Generator   .......................................................................... 47
Keyword When   ............................................................................ 48
Calculate Library Functions   .......................................................... 49
End of Next Stage   ........................................................................ 50
Coding in M1 Build Part 4   ............................................................ 51
Creating a Group   .......................................................................... 52
Groups   ......................................................................................... 53
Tables   ........................................................................................... 54
Update the Data Types   ................................................................. 55
Start Up Event   .............................................................................. 56
Update to Signal Generator Code   ................................................. 57
Testing the Project in Tune   ........................................................... 58
Add Input to Control Waveform   .................................................... 59
Add an Input Pin   ........................................................................... 60
Configuring an Input Pin   ............................................................... 61
Setting up the Input   ..................................................................... 62
Reading the Input into a Value   ...................................................... 63
Scheduling   ................................................................................... 64
Add the Next Enumerated Value   .................................................. 65
Testing the Input  ........................................................................... 66
Final part of the Test Project - Output   ........................................... 67
Configure the Output   .................................................................... 68
Test Project Complete   .................................................................. 69
What to Do Now?   ........................................................................ 70
MoTeC Online   ............................................................................... 71
MoTeC Online Registration   ........................................................... 72
Motec Online – Logged In   ............................................................ 73
Downloading a Project   ................................................................. 74
Opening the GPR (M170) in Build   ................................................. 75
GPR M170   ................................................................................... 76
Modifying Traction Control   ........................................................... 77
Allowing for Wet Weather Tyres with TC   ..................................... 78
Starting your New Group   ............................................................. 79
Copy Settings   ............................................................................... 80
Copy and Paste a Group   ............................................................... 81
Copy and Paste an Input   .............................................................. 82
Change Where Speeds Get Circumference   .................................. 83
Create the Function   ...................................................................... 84
GPR Update Complete   .................................................................. 85
HELP, I’m Stuck!   ........................................................................... 86
M1 Development Services   ........................................................... 87
M1 Development Model   ............................................................... 88
The Process   ................................................................................. 89
Selling Your Package Dev ECU   ..................................................... 90
Selling Your Package Partner   ........................................................ 91
Partner Package Pricing   ............................................................... 92



TRAINING CONFERENCE 2015 
 

M1 Build 



M1 BUILD TRAINING – JULY 2015 

Content and Purpose 

This training course is intended to give users some experience in the process of using 
M1 Build to modify M1 ECU firmwares. 
 

The information we are presenting here is designed to work in conjunction with the 
M1 Build User Manual, which can be downloaded when you install M1 Build. 
 

These training notes will walk users through the M1 Build process, while the M1 Build 
User Manual is a detailed reference guide to the entire product and its features. 
 

You should refer to the reference guide for additional information if you are having 
trouble. 



M1 BUILD TRAINING – JULY 2015 

M1 Build Software 

• The M1 Build software is available on MoTeC online. 

• The latest version of M1 build can be found here: 

– https://moteconline.motec.com.au/Home/Downloads 

• Download and install the software 

• Once you have the software installed it is always worthwhile to 
keep it up to date. With M1 Build, just click Help/Check for 
Software Updates when online to ensure that you are using the 
latest version. 
 

 

https://moteconline.motec.com.au/Home/Downloads


M1 BUILD TRAINING – JULY 2015 

Overview 

• Build is a powerful program used to generate firmware for M1 series ECUs. It includes 
a sophisticated software editor with predefined and simplified possibilities to provide a 
user-friendly, timesaving and elaborated programming experience. 
 

• The integrated compiler ensures automatic firmware integration into the M1. 



M1 BUILD TRAINING – JULY 2015 

Starting M1 Build 

After starting M1 Build, a screen 
similar to this displays. 

The screen layout consists of 
three windows: 

 

• Tools & Help window on the left 

• Main working window in the 
middle (this cannot be hidden) 

• Properties window on the right 

• Messages window along the 
bottom 



M1 BUILD TRAINING – JULY 2015 

Open a Project 

• Choosing to open a Project lists the available Projects in the Project folder, together with 
their versions and revisions. 

The Projects can be filtered by name. The Project versions and revisions can be filtered by latest revision 
from all versions, or by latest overall revision. 
Additionally, this window contains functions to manage Projects, see Managing Projects and Revisions. 



M1 BUILD TRAINING – JULY 2015 

Start a Project 

• A Project can be created or an existing Project can be opened by using the toolbar icons in the 
upper left section of the screen, by using the menu options in the File menu, or by using the 
options in the main window. 



M1 BUILD TRAINING – JULY 2015 

Create a Project 

Three methods exist for creating a new Project: 

• As an empty (blank) Project 

• Using an example Project as a reference 

• Using an existing Project as a reference 

 

– Select File>New to display the Create New Project 
window 

– Select  

 

 



M1 BUILD TRAINING – JULY 2015 

Setting Up a New Project 

When you start an empty Project, 
you need to configure its properties: 

1. Select target Hardware 

2. Select Development Licence 
(this needs to match your target 
ECU Development Licence) 

3. Set the Version to be the most 
recent (if it is not already) 

4. Fill in Name and Company details 

5. Save Project 



M1 BUILD TRAINING – JULY 2015 

Getting Around M1 Build 

Using the Main Window 

• At the top of the main window, the name of the current Project, the Project version and 
revision is displayed. 

• Below that name, a number of tabs divide the main window. 



M1 BUILD TRAINING – JULY 2015 

Settings Tab (Page 20) 

This tab includes basic information about the Project. 

The settings can be defined or adjusted at any time. 
However, it is recommended to do so at the start of 
each Project. 

This is because: 

• The chosen System Version influences the hardware 
classes that are available. 

• The chosen Hardware Model defines the input and 
output pins that are made available in the Project. 



M1 BUILD TRAINING – JULY 2015 

Modules Tab (Page 22) 

• Modules are collections of fixed, predefined classes and/or data types that can be embedded 
in the Project. 

• A common use of classes is to provide for tasks that are needed often, or to facilitate 
inclusion of complex tasks. 

• The user is able to set the boundary conditions by adjusting the properties. M1 Build comes 
with various classes to simplify the building of a Project. 



M1 BUILD TRAINING – JULY 2015 

Data Types Tab (Page 24) 

This tab provides for the administration of data types, enumerated data types and their 
enumerators. 

• Data types define characteristics of values allocated to an object. See the M1 Development 
Manual for a detailed description of data types. 

• M1 Build comes with a set of predefined data types, but you can add your own. 



M1 BUILD TRAINING – JULY 2015 

Objects Tab (Page 30) 

This tab provides for the management of objects in the M1 Project. 



M1 BUILD TRAINING – JULY 2015 

Schedule Tab (Page 41) 

The Schedule Tab displays the scheduling rate and order of each process in the Project. 

• As M1 Build automatically determines the scheduling of all tasks that need to be scheduled, 
the Schedule window is mainly for information purposes. 



M1 BUILD TRAINING – JULY 2015 

Diagnostics Tab (Page 43) 

This tab is used to manage diagnostic setup. 

• Channels that are selected for diagnostic logging are mandatorily logged in M1 Tune when 
logging is active. 



M1 BUILD TRAINING – JULY 2015 

Security Tab (Page 45) 

The security settings can be set to enforce restricted access (by user) to certain Project objects and 
configurations in M1 Tune. 

There are three security levels available: 

• Off 

– No restrictions apply to any user in M1 Tune and no further restrictions can be defined in the Package by M1 Tune. 

– In the M1 Build Project, no further configuration is necessary for this security setting. 

• Basic 

– As a default, no restrictions apply to any user in M1 Tune, but it is possible in M1 Tune to set up security permissions 
for different users (however it is not possible in M1 Tune to group channels into different permission groups). 

– In M1 Tune, defined security permissions will be saved with the Package. A change of the security permissions require 
only a change in the Package and not in the M1 Build Project. 

– In the M1 Build Project, no further configurations are necessary for this security setting. 

• Advanced 

– In the M1 Build Project, security permissions are predefined. 

– Any change in these security permissions therefore requires a change in the M1 Build Project and the generation 
of a new firmware version. 



M1 BUILD TRAINING – JULY 2015 

Classes Tab (Page 51) 

This tab displays all classes currently available in the Project. 

• A class is a construct that is used to create instances of itself 
called objects. 

• As an example, from within Build, you can copy an instance 
of the Boost control class into your Package. 

• You can then use the boost control object to act as a single 
boost controller by configuring it to work within your 
Project. 



M1 BUILD TRAINING – JULY 2015 

Library Tab (Page 52) 

This tab shows the available libraries and the included functions that 
come with M1 Build. 

• These library functions can be seen as an extension of the 
programming language, as they provide program structures or 
calculations that are often used but do not exist as a single command 
in the programming language. 



M1 BUILD TRAINING – JULY 2015 

Keywords Tab (Page 53) 

This tab shows all available keywords and operators used by the M1 
Programming Language. 

• By selecting an item, additional information concerning this item will 
be displayed in the 'Help'-section in the upper part of the window. 



M1 BUILD TRAINING – JULY 2015 

Working Example  

In this example, the Project will create a simple LED light control. 
The LED shall be driven with a selectable time-based light pattern. 
 
Light patterns to be chosen from are: 

• Sawtooth 

• Square 

• Sine 

• A pattern that can be defined freely by the user 

• A square pattern based on an input knob signal 

 
 



M1 BUILD TRAINING – JULY 2015 

Coding in M1 Build 

To complete this task, you should break down the one large task into 
smaller simple tasks like this: 
 
1) Generate a time counter to provide the time base for the light pattern 

2) a) Introduce the option for the user to select the pattern 
b) Define the sawtooth, square and sine pattern based on the counter 
and the user selection 

3) Add a possibility to generate a user defined pattern 

4) Integrate a knob voltage input 

5) Specify the output to the LED 

 



M1 BUILD TRAINING – JULY 2015 

Creating a Time Counter 

Step 1 is to create the counter channel: 

1) Select the Objects Tab within M1 Build 

2) Create a channel for the counter 
• Right click on the root of the Project and select Insert/Built-in/Channel 
• Before you choose a name for your channel read the next slide... 

 
 
 
 
 
 
 



M1 BUILD TRAINING – JULY 2015 

Naming Conventions 

The naming of an object is restricted as follows: 

• Must begin with a character 

• Must contain only characters, digits or spaces 

• Two consecutive spaces are not allowed 

• Characters used must not be a keyword of the programming language; such as 'if', 
'and', 'false', etc. 

 

Now name this channel Counter 



M1 BUILD TRAINING – JULY 2015 

Create a Function 

Step 2 is to create a scheduled function to calculate and assign the 
counter channel value: 

1) Right click on the root and insert a Built in Scheduled Function 

2) Name this function Counter Operation 

 



M1 BUILD TRAINING – JULY 2015 

Create the Code to Run the Counter 

Now you have a channel called Counter, and a scheduled function called Counter Operation. 
What do we do? Create the code to run the counter: 

1) Double click on Counter Operation to bring up a window at the bottom half of the 
centre pane. 

2) This window is where you read/edit/create the code for your M1 Project. In this instance, we 
are going to create a counter that counts up to 360, then resets back to 0, and counts up 
again in a continuous loop. The value is going to be stored in the channel called Counter. 
Here is the code. 

 



M1 BUILD TRAINING – JULY 2015 

Writing the Code  

The M1 Build software prompts you for suggestions on what you might be wanting to do. 
Use these prompts to find what you need, because if it isn't offered it probably won’t work! 

So first line of the code is to create a condition to check if the counter is less than 360. 

1) Type in the letter i – the word if is now highlighted. Select it by double clicking or 
pressing Enter. 

2) Open normal brackets ( and type in C – we are looking for the word Counter, 
so you can either search the list or keep typing to search further into the list. 
When you find ~Counter, select it. 

3) Type in the Less than symbol (<) and then the number 360 then close brackets ) 

 

End result:   if (Counter < 360) 

 

 



M1 BUILD TRAINING – JULY 2015 

Brackets 

When you create a condition such as If counter < 360, you need to encapsulate 
all of the things that you want to do for that condition in one place. 

This is done by putting curly brackets around the list of things that need to be done 
when the If statement is true. 

If .... 

{ 

Do this 

Do this also  

And this 

} 



M1 BUILD TRAINING – JULY 2015 

Incrementing a Value 

Now we want to increment the counter. This is done by adding one to the counter each time this 
function is called. The speed that this counts up is controlled by how regularly we schedule this 
function to run. This will be done later. 

Now we need to code the addition: 

Type in { to open up the list of items to be done when this condition is true. 

On the next line type this Counter = Counter + 1.0; 

This line makes the ECU look at the value of the Counter channel, and add one to it. 

It can also be written in shorthand like this: 

Counter += 1.0; 

*REMEMBER that all lines of code not part of a condition need to end with a semicolon ‘;’ 

Close the list of statements for this condition by putting } on the next line 



M1 BUILD TRAINING – JULY 2015 

Formatting the Code 

When writing code, there are few rules to force a programmer to make it easy 
to read. But you should consider how easy it is going to be to debug later. Given this, 
we generally space out the code to make it as easy as possible to understand. 

This code:  

if (counter<360){counter+=counter;}else{counter=0;} 

works exactly the same as this code: 

if (Counter < 360) 
{ 
 Counter = Counter + 1.0; 
} 
else 
{  
Counter = 0.0; 

} 



M1 BUILD TRAINING – JULY 2015 

If Else Statements 

Now we have written an if statement that says if counter is less than 360, we should increment 
the counter. 

What do we do when the counter is greater than 360? 

In programming terms, we use an else statement. It is basically written like this: 

If ... 

 do this 

else 

 do this instead 

So for our code, we have written the if part, time to do the else. 

Type in the word else on the line by itself. 

On the next line open the curly brackets { to start the statements for the else 



M1 BUILD TRAINING – JULY 2015 

Setting a Channel to a Value 

Set the Counter Value 

Now we are in the statement group for the Else, we need to set the value back to 0. 

This is done with the statement: 

Counter = 0; 

When written like this the statement assigns the left hand side channel with the value 
from the right hand side of the = symbol. 

Finally close the Else with a close curly bracket } on the next line 



M1 BUILD TRAINING – JULY 2015 

Using Comments  

One of the most undervalued parts of programming is commenting your code regularly. 

When you come back to your Project in 6 months, will you remember why you wrote the code in 
the way that you did? 
 

To place a comment in the code, type in a double slash // then write the comment afterwards. 

Everything on the same line written after a // is ignored by M1 Build, but saved with the code. 

Here is an example of how it is used: 
 

Counter = 0.0;   //This line resets the counter back to zero once we exceed 360 



M1 BUILD TRAINING – JULY 2015 

Validating Your Code 

Now you have created your code, it is time to see if it is syntactically valid.  

This can be done by pressing the Validate Package button (shown here). 

 



M1 BUILD TRAINING – JULY 2015 

Validation Errors 

There is a large number of possible validation errors. One I have shown here initially is the error 
you will get if you forget to close a bracket. See the third error in the list below. Keep in mind that 
the first error in the list may be a consequence of an error further down.  

If you have written the code correctly, you should get this response. 



M1 BUILD TRAINING – JULY 2015 

Scheduling the Event 

• So we have completed writing the code to create the counter, but it still doesn't work. 
Why is this? 

• For Scheduled Function to work, we need to schedule it to run at a particular rate. 

• Right click on the root and Insert an Event - on 100 Hz 

• This event will run at 100hz, so you can assign a scheduled function to be run by it. 

 

• Next, select the Counter Operation Scheduled Function 

• When it is selected, on the right is the Properties pane, you can see its properties. 

• Later, we will go through the Properties pane more, but for now, select the event drop down, 
and choose the only coloured item Events On 100 Hz. 



M1 BUILD TRAINING – JULY 2015 

Grouping  

To keep the Project manageable, it is worthwhile to keep similar items within one group heading. 

Examples of this are having a group called Brake, where it may contain items such as 

• Brake Pressure 

• Brake Temperature 

• Brake Switch 

• Brake Pedal Position 

 

For our Project, we want to keep all Events in one group (through we have just one currently) 

Right click on the root, and insert a Built in – Group 

Call this group Events. 

Drag and drop the On 100 Hz Event into this group 



M1 BUILD TRAINING – JULY 2015 

Validating Your Code 2 

Now you have fixed your validation error, it is time to see if it is syntactically valid again  

This can be done by pressing the Validate Package button (shown here) 

 

You have completed your first valid Project when you get this response. 0 Errors, 0 Warnings 



M1 BUILD TRAINING – JULY 2015 

Sending the Package to an ECU 

To send a Package to an ECU, you need to have an ECU with a Development Licence. 
The Development Licence is the key with which you can control who gets to use your Project. 

To send your custom firmware into a Development ECU, the Project will need to be built against a 
Development Licence (e.g. “AvioRace Development  Licence”). Each developer has their own 
unique Development Licence.  

So if you build your firmware against an AvioRace Development Licence on your PC, you will only 
be able to load it into an ECU that has been loaded with the AvioRace Development Licence. 

The only person who can order an ECU with your Development Licence in it is you. This system 
ensures that only you, the owner of a Development Licence, gets to sell or use your firmware. 
All ECU Development Licence orders must come through you for your Licence. 

 

 



M1 BUILD TRAINING – JULY 2015 

Result    

Once this code is built and pushed into an ECU, you can view the value in a number of ways, but 
the best way to view the value of the Counter channel is as a time graph. Now we can see the 
result of our code, the Counter increments up to 360, then resets to 0 and starts again. 



M1 BUILD TRAINING – JULY 2015 

Coding in M1 Build Part 2 

Introduce a User Pattern Selection 

The Project is extended with: 

• An enumerated data type with the values of the patterns 

• A parameter that allows the user to choose the pattern 

 
 



M1 BUILD TRAINING – JULY 2015 

Data Types (Page 20) 

Developers can define values to be one of the following data types. 

• Floating Point Floating point represents real numbers in a way that can support a wide range of values. 
Numbers are represented by a fixed number of significant digits and scaled using an exponent. 

• Enumeration Enumerations are used where it makes more sense to use a textual description rather than a 
numeric value. 

• Integer An integer is a whole number that is positive, negative or zero. 

• Unsigned Integer An unsigned integer is a non-negative whole number. 

• Boolean (Boolean data types are restricted to local variables only). M1 Build supports use of enumerated 
data types for channels and parameters, as they provide more information than a Boolean data type. 

• String (String data types are restricted to local variables only). They can be used to show text in information 
windows that can open up in M1 Tune. 

 

All data types in the M1 ECU are 32 bits in width. 

 



M1 BUILD TRAINING – JULY 2015 

Create a Custom Enumeration 

Select the Data Types Tab 

Right click in the open space and select New Enumeration  
 

Call it Waveform Type 
 

Right click on Waveform Type and select New Enumerator 

Create Sawtooth Enumerator 

Repeat to add in Square and Sine 

Right click on Sawtooth and select Default Enumerator 

You have now created some Types that can be selected from in Code and within Tune later. 



M1 BUILD TRAINING – JULY 2015 

Create a Parameter 

What is a Parameter, and how does it compare to a Channel?  

A Parameter is an item that can have its value set by the user within Tune. 

A Channel is very similar, but it can only have its value set by the firmware itself. 
 

An example of a Channel is Engine RPM. The Firmware sets this channel value based on the 
speed measured by the reference sensor. 

An example of a Parameter is a Reference mode, where the user in Tune can select from a list of 
available modes. 
 

So, now you can create a parameter by right clicking on the root, then choose Insert /Built-In / 
Parameter. 

Label the Parameter Type. 



M1 BUILD TRAINING – JULY 2015 

Set the Data Type 

Now that you have created a Parameter, we need to tell M1 what 
type of Parameter it is. 

Select the Parameter item from the root list. When you have done 
this, you will see the items in the right hand pane – Properties – 
showing you the properties of this new parameter. 

Is this Parameter a Floating Point Number, an Integer, or a 
Enumerated Data Type? In this instance the Data Type is going to 
the enumerated Data Type that we just created called Waveform 
Type. You will find this type at the bottom of the Data Type list. 

 

 



M1 BUILD TRAINING – JULY 2015 

Coding in M1 Build Part 3 

Define the sawtooth, square and sine pattern based on the counter 

In the Project, the following objects are added and configured: 

• A channel to represent the selected Signal 

• A new group where the counter calculation is put into 

• A scheduled function to calculate the pattern based on the selection from the user, and assign the 
pattern to the signal channel 

 



M1 BUILD TRAINING – JULY 2015 

Implement User Defined Patterns  

Create a Channel called Signal using the technique 
described on Page 22 . 

Change its properties on the right hand pane so that it has 
a data type of Floating Point with units of Ratio.  



M1 BUILD TRAINING – JULY 2015 

Signal Generator 

Create a Scheduled Function called Signal Generator 
using the technique described on page 24 . 

Once you have created this function, add in this code: 

The first item you will come across is the statement 

When 

 

 



M1 BUILD TRAINING – JULY 2015 

Keyword When 

The when keyword begins a when/is construct.  

when (Enumerated Data Type)  

{ 

  is ([enumerator])  

 { do this }  

 is ([enumerator] or [enumerator])  

 { do this }  

}  

The [argument] used in the when statement must be of an Enumerated Data Type. 
Each [enumerator] must be one of the enumerators of the enumeration, and all of the 
enumerators of the enumeration must be covered by the when/is construct. 

The 'or' keyword can optionally be used to specify multiple enumerators to match 
an 'is' statement 

 



M1 BUILD TRAINING – JULY 2015 

Calculate Library Functions 

A library function can be used in code to perform common operations more simply. 

Examples of this are:  

Calculate.Max (a,b) which returns the bigger value out of a and b 

Calculate.Average (a,b) returns the average of the two values 

Calculate.Hysteresis (arg, High, Low, Filter) returns true false hysteresis calculation of values 

So the Calculate Library Functions are helpers to streamline your coding. 

In the instance of our sample program we have used the Calculate.FastSin library function which 
calculates the sine of the current Counter channel. 

The end result of the FastSin in this instance will be a sine wave output 

 

 



M1 BUILD TRAINING – JULY 2015 

End of Next Stage 

You have now completed the next 
stage of your M1 Build program. 

You should be able to build your code. 

Spend the time to go through your 
validation errors until you get a clean 
build. 

I will build the Project and send it 
to the ECU. This is what it should look 
like in the ECU. 



M1 BUILD TRAINING – JULY 2015 

Coding in M1 Build Part 4 

The Project is modified to: 

• The signal generation is moved into a new group named Signal 

• A table for calibration of the user defined pattern is added 

• The data type representing the selectable pattern options is extended to cover the table option 

• The signal generation code is complemented to allow the use of the created table 



M1 BUILD TRAINING – JULY 2015 

Creating a Group 

As discussed earlier, it makes sense to keep your programming tidy. One way to do this is to group 
related items together. We will now create a group called Signal, and place within it all the items 
related to the signal generation. 

1) Right click on the Channel called Signal, and rename it as Value. 

2) Right click on Root and Insert / Built-In / Group 

3) Name your new group Signal 

4) Drag and Drop the channel Value into the group Signal 

5) Select the group called Signal and tick the Default Value check box in the Properties window 

6) Click the down arrow at the right hand side of the Default Value drop down and select 
Signal.Value 

You have now created a Group called Signal. The group Signal has a default value assigned to it 
from the channel called Signal.Value. 



M1 BUILD TRAINING – JULY 2015 

Groups 

Now that you have created this group, you can add in all of the related items. 

Drag in the Signal Generator Scheduled Function 

Drag in the Type Parameter 

You should now see your Project look something like this 

 



M1 BUILD TRAINING – JULY 2015 

Tables 

Now we can add a table into our Group called Profile 

Right click on our group Signal, then Insert /Built-in /Table 
 

Change the Value Quantity to Ratio in the Properties window. 

Set the Display and Validation Min Max’s 0 to 1 

Set the Update event to 100 Hz so the table value updates 100 times per second. 

Towards the bottom of the properties window, you will find the Table heading, which lets you 
select the number of axes on the table, the channel for each axis and the maximum number of 
sites. 

Set the table up with 1 axis, set the Object for the X axis as Counter, and the Maximum sites 
to 21. 

 

 

 



M1 BUILD TRAINING – JULY 2015 

Update the Data Types 

Find your Waveform Type Data Type within the Data Type tab. 

Right click on the Waveform Type label and select New Enumerator 

Call this new Enumerator Lookup Table 

 

 



M1 BUILD TRAINING – JULY 2015 

Start Up Event 

Some objects need to be associated 
with a startup event to set their value 
on start of the firmware. 
 

The Table that we have just added in 
needs to have its value set on firmware 
startup, but we currently don't have an 
event running on firmware startup. 

 

Right click on the Events Group, Insert/ 
Events/On Startup. 

 



M1 BUILD TRAINING – JULY 2015 

Update to Signal Generator Code 

Select your signal generator code. 
 

Update your code to match the sample on the right, adding 
in the Lookup Table enumerator, and setting the 
Counter.Value to the Profile Table output. 

 

Yo.u should now be able to build your Project again 



M1 BUILD TRAINING – JULY 2015 

Testing the Project in Tune 

Now that we have built the Project, we can send it to the ECU. 

We can now select the Lookup Table signal generator. 

To make the signal generator produce a wave, you need to update the table to have sites for the 
whole 360 value range of the counter. When you have updated the axis to have the sites you 
need, put in values between 0 and 1 to represent what you want the signal.value to be when the 
counter is at specific values. An example is shown below: 



M1 BUILD TRAINING – JULY 2015 

Add Input to Control Waveform 

In this section of the training, we will look at how to add an input into the Package from a pin on 
the device, and have it control the waveform. 

 

1) Add a new group called Request. 

2) Insert a Channel called Value within the Request group 

– Select a Quantity of Ratio 

– Set the Display units to be percentage % 

– Set the Value Display Min and Max properties to be a ratio with 0 to 1 limits 

– Set the Validation Type to be MinMax and set the limits as 0 – 1 

3) Select the Request Group, and change the Default Value to be Request.Value 

 

 

 



M1 BUILD TRAINING – JULY 2015 

Add an Input Pin 

Select the Request Group 

1. Right click on the Name and Insert a Hardware / Analogue Input / Ratiometric Voltage 

2. Call this Analogue input Input   

 



M1 BUILD TRAINING – JULY 2015 

Configuring an Input Pin 

Select the Ratiometric Voltage called Input. To use this input, it needs to be associated with a pin 
on the device. This can be done as either a Resource Constant or Resource Parameter. 

Resource Constant: 

This type of resource is allocated to a specific input pin by the developer during the coding of the 
Project. 

Resource Parameter: 

This type of resource is left unallocated to a specific pin on the device by the developer, and the 
end user can allocate a resource from within Tune. 

To set the Resource type, selecting the Small 
icon next to the Resource Object drop down. 

For our Project, select Constant. 



M1 BUILD TRAINING – JULY 2015 

Setting up the Input 

Now you have set up the input as a constant, we need to 
allocate it a pin to use. 

From the Value IO Resource drop down, select Analogue 
Voltage Input 2 

Select the Filter Input object to be a parameter 

– This allows the end user to set a Filter on the input 

Set the Reference input object to Constant 

Finally set the Reference Value to Absolute. 

– This has set the input pin to be read as a reference 
 value rather than ratiometric to one of the 5v rails. 

We have now set up our input pin. Time to make it work. 



M1 BUILD TRAINING – JULY 2015 

Reading the Input into a Value 

Now that we have setup an input, we need to do something with the input voltage. 

1. Right click on the Request group and Insert a Scheduled Function Called Scaling. 

2. Double click on the Scaling Function to open up the code window 

3. Add in this one line of code: 

Value = Limit.Range(Input / 5.0, 0.0, 1.0); 

This line of code sets Requst.Value to be equal to Request.Input / 5, with the resultant value 
limited to a value  between 0 and 1 

Select the word Range from Limit.Range to 
see the help for the Limit.Range function. 



M1 BUILD TRAINING – JULY 2015 

Scheduling 

Don't forget to schedule your new items. 

You need to tell the M1 how often to check the value of the voltage at the input pin. 

You also need to tell the M1 how often to run the Scaling Scheduled function. 

Select each of these two items and set their Events to 100 Hz. 



M1 BUILD TRAINING – JULY 2015 

Add the Next Enumerated Value 

1. Select the Data Types Tab at the top of the window 

2. Select the Waveform Type Enumeration 

3. Right click on the Waveform Type and add a new enumerator. 

4. Call this Enumeration Input Request. 
 

Select the Objects tab again. 

Open up the Signal group and double click on the Signal Generator 
Scheduled Function 
 

Add the Code in the box on the right into this function at the bottom. 



M1 BUILD TRAINING – JULY 2015 

Testing the Input  

Build your Project, fix any errors, then send your Project to the ECU. 

Select the Type drop down and change it to out new Enumeration, Input Request 

Move input dial up and down, and you will get the signal below 



M1 BUILD TRAINING – JULY 2015 

Final part of the Test Project - Output 

In this final increment to the test Project, we will control an output with the pattern. 

To do this we will Insert a Hardware/Digital Output/Pulse Width Modulation object 
into the root. 

Once added,call this object LED. 



M1 BUILD TRAINING – JULY 2015 

Configure the Output 

Once you have added in the LED PWM output, we need to configure 
its properties. 

Select the LED output. 

Within the LED properties window, setup it up to match the properties 
shown here on the right. 

Set the Resource Object up as IO Resource Parameter. This will let the 
user in Tune select which output to use. 

Set the Frequency as a Parameter, and the Duty Cycle to our Group 
called Signal 

Set the Validation properties as shown. 

Set the Update event at the bottom to update the state of the output on 
the 100 Hz event. 



M1 BUILD TRAINING – JULY 2015 

Test Project Complete 

With those changes, we can now send our complete test Project to the ECU. 
 

When it is sent, you can set the LED output resource to any available resource for that 
hardware type. 

Set the frequency to 0 (to make a switched output) or to 100 Hz to turn it into a PWM LED 
which varies brightness in line with the Signal value. 
 

**Demonstration of the LED control working on the Simulator** 
 

Save your work we have now completed that Project. 



M1 BUILD TRAINING – JULY 2015 

What to Do Now? 

You have just run through many of the skills that you will need to use when creating your own 
Packages using M1 Build. 

How do you now use those skills to create your own unique firmware? 

It is not expected that anyone will be start a new Project from scratch, so if you want to make 
your own special firmware, what is the process? 

Via MoTeC online, access to our Public Projects is provided for developers to use as a starting 
point. It is most common that a developer will take a copy of the latest GPR Package and use that 
as the starting point for their customisations. 

 



M1 BUILD TRAINING – JULY 2015 

MoTeC Online 

MoTeC Online is the new repository for MoTeC products. Amongst other things, it holds within it 
all of the packages, projects, licences and other items needed for working with an M1. 

https://moteconline.motec.com.au/ 

 

 

 

 

When you first open MoTeC Online,  you 
will have access to download any of the 
publically available packages.  

There is also access to the M1 software. 

 

For any additional access you need to 
register for an account. 

 

 

 

https://moteconline.motec.com.au/


M1 BUILD TRAINING – JULY 2015 

MoTeC Online Registration 

MoTeC Online is available for any MoTeC dealer to have access to. To gain access, email to 
dispatch@motec.com.au with your dealer details and ask for access. 
 

If you are not a dealer, then access to MoTeC Online is still available, but the application for an 
account must come through your local dealer. 
 

Contact your local dealer, and let them know about your interest in M1 Development ECUs. 
Your dealer will send in an application on your behalf to the same email address. 
 

In general, access to MoTeC Online is limited to dealers, M1 developers and customers genuinely 
interested in MoTeC Development ECUs. 

mailto:dispatch@motec.com.au


M1 BUILD TRAINING – JULY 2015 

Motec Online – Logged In 

Once you have logged into MoTeC Online, there is a menu 
down the left hand side of the screen. Your menu options 
will vary depending on the access level of your account. 

Most commonly, MoTeC Online will be used to view and 
download Packages, Projects and software. 
 

**NOTE: A Project can be opened in M1 Build and contains all 
objects, information and logic of a Package. 

 During compilation, firmware is generated, definitions of data, 
security groups, data logging, Worksheets and calibrations are 
added which results in a Package. 

A Package can be opened in M1 Tune. In general, properties that 
have been defined in M1 Build cannot be changed in M1 Tune. 

 

 



M1 BUILD TRAINING – JULY 2015 

Downloading a Project 

From the Firmware heading, select the Projects option. 

The list shown are all of the publicly available builds that can 
be downloaded. 

For our course, we are going to have a play with GPR (M170) 
so for those with access to MoTeC Online, select that one. 

For those without a MoTeC Online account, a copy of the 
Project is on your USB. 

Select Open to open the Project file, then install the archive. 



M1 BUILD TRAINING – JULY 2015 

Opening the GPR (M170) in Build 

Go back to M1 Build 

Select File/New Project 

Select  From Existing Project, then Next 
 

Within the Filter area, type in GPR. 

You should be able to find GPR(M170) 

When you select it, the right hand pane 
will show versions you can select from.  
 

Select the latest revision, then click Next 

Fill in Project and Version Names - Finish 

 



M1 BUILD TRAINING – JULY 2015 

GPR M170 

Given the Project that we have just 
finished, you can now understand what 
each of these groups will contain.  
 

It will be a combination of channels, 
tables, inputs, outputs and functions just 
to name a few. 
 

To look at how we can modify this 
Package we will look at the traction 
control system. 



M1 BUILD TRAINING – JULY 2015 

Modifying Traction Control 

The M1 traction control system operates by limiting the actual Engine Speed to the Traction 
Engine Speed Limit which is calculated from the Traction Aim Speed value. 

The Traction Aim speed is the current Vehicle Speed + Traction Aim Slip. 

The Traction Engine Speed limit is calculated from tyre circumference and gear/diff ratios. 
 

The Traction Engine Speed Limit Ignition Range is calculated as Traction Range multiplied by 
Traction Engine Speed Limit. It defines the engine speed range above Traction Engine Speed Limit 
where ignition cut is progressively applied for engine speed limiting. 
 

To view how this is coded, expand the Traction Group, and double click on the Update 
scheduled function. 



M1 BUILD TRAINING – JULY 2015 

Allowing for Wet Weather Tyres with TC 

Sometimes a wet weather tyre for a race car is a different rolling circumference to the dry 
weather tyres. In our current TC method, you can change the rolling circumference of the tyre 
in software, but there is no fast way to adjust the TC to allow for the changed tyre diameter. 
 

As an example of how we can modify an existing Package to customise it, we will modify GPR to 
have the tyre circumference change between a Dry and Wet tyre circumference. 

 

To do this, I am going to assume that we use a switch to change between wet and dry tyres. 



M1 BUILD TRAINING – JULY 2015 

Starting your New Group 

Add a new group to the Root by right clicking on the Root/Insert/Built-in /Group. 

Call this group Tyres. 

Now insert a sub group to the Tyres group called Circumference. 

Within the Circumference group, add a sub group called Front. 

Within the Front group, create two parameters, Wet and Dry. 

 

 

 

 

 



M1 BUILD TRAINING – JULY 2015 

Copy Settings 

When you are creating a new function, it is often faster to copy a 
similar item or its settings. 
 

To configure the settings of the dry and wet tyre circumference, 
copy settings from an existing circumference channel. In this 
instance you can use the Wheel Speed Front Circumference. 
 

Select your Tyres Circumference Front Wet and paste the 
settings. Do this to the Dry parameters also. 

 

 



M1 BUILD TRAINING – JULY 2015 

Copy and Paste a Group 

To create the Rear circumference group, we will again take a short cut.  

Copy not the settings this time, but the entire Front group. 

Paste this group into the circumference group. 

Rename Front 1 to Rear. 



M1 BUILD TRAINING – JULY 2015 

Copy and Paste an Input 

To create most items, it is generally faster to copy a similar item as the starting point. 
 

An example of this is if you want a new temperature sensor, copy the coolant temperature group 
and paste it into your new temperature group. 
 

In this example, we need a Wet switch. We could create one from scratch, but to create this more 
quickly, lets just copy an existing switch, in this instance, we can copy the brake switch. 
 

Paste this into your Tyres Group. 

Rename it Wet Switch. 



M1 BUILD TRAINING – JULY 2015 

Change Where Speeds Get Circumference 

For our example, we want to change the source of the 
circumference used in the wheel speed calculation to use our new 
wet and dry values. 

Expand out the Wheel Speed group and then select Front. 

Select the Circumference input object and change it from 
Parameter to Channel. Make the same changes to the Rear 
group. 

What we have done here is to change the source of the 
Circumference Front and Rear from a single value the user inputs 
to a channel that we can define in a scheduled function. 

Now we need to create that function. 



M1 BUILD TRAINING – JULY 2015 

Create the Function 

Right click on the Tyres group an Insert/Built-in/scheduled function. 

Call this scheduled function Wet Dry Calculation 

Write this code into your scheduled function: 

 

 

 

 

 

 

 

Finally schedule it to run at 100 Hz and build your Project. 



M1 BUILD TRAINING – JULY 2015 

GPR Update Complete 

You have now completed a modification to the GPR Package. 

This example has shown how you can use the skills from the earlier LED example to modify 
the GPR Package. 

More detailed help can be found from within 
the build Package under the Help Menu 

The Build and Development manuals are 
located there. 



M1 BUILD TRAINING – JULY 2015 

HELP, I’m Stuck! 

If you are working on your Project and you get stuck and don’t know how to fix your issue: 

1) Read the manuals provided with M1 Build. 

2) Look through other examples of what you are trying to do in GPR 

3) Try the MoTeC M1 Build Forum, where you may get some support from other Build users 
 

From this point, all other support is charged due to the amount of support that may be required. 
Your options for chargeable support are: 

1) Email – we offer charged email support to assist to fix your issues. 

2) MoTeC Development Services – By the hour coding services offered by MoTeC. 

3) External Developers – Contact MoTeC to be put in touch with an external developer to assist 
you with your application. 

 

 



M1 BUILD TRAINING – JULY 2015 

M1 Development Services 

The M1 Development Service is a business initiative to support the sale of M1 products. 
The primary purpose of this service is to provide a means of customising the M1 product 
to meet individual needs. 

What the service provides: 

• Development of M1 Projects/Packages based on customer and customer requirements. 

• Writing specific software module(s) for a Project based on customers’ requirements.  

• Reviewing code written by the customer writing their own projects. 
 

There is a complete document which explains more details of the service. You can get a copy 
if you are thinking of using the service. 

 

 



M1 BUILD TRAINING – JULY 2015 

M1 Development Model 

How does the M1 Development model work? 

We need to consider what you might want to do with it. Here are some 
options: 

• Create a one off specialised Package for a customer’s car  

– Add in special function to specifically suit their needs 

• Create a Package to suit a vehicle modification Package to sell to the 
public (see example on the right from UGR) 

• Create a custom Package to act as a road car ECU replacement to sell 
to the public 

 

 

 

 

It is with great pleasure that 
Underground Racing introduces to you 
the very first Twin Turbo Lamborghini 
Huracán LP610-4.  
Preliminary testing has been a great 
success. Driving an Underground Racing 
TT Huracán is something that can only be 
experienced, not explained.  
Driving away on launch control with the 
help of some boost, that is controlled via 
our proprietary JRR MoTeC M1 
electronics and firmware, and snapping 
through the gears of the DCT 
transmission with the additional 
horsepower is just that, an experience. 



M1 BUILD TRAINING – JULY 2015 

The Process 

To be able to use M1 Build to produce your own customisations, you merely need to purchase 
an M1 Development ECU.  

An M1 Development ECU is any ECU in the MoTeC M1 range that has a Development Licence 
loaded into it. 

Each Developer’s Licence is individually locked to the original purchaser. This means that no 
one else is able to ever purchase an ECU with your Development Licence. This ensures that 
anything that you produce in M1 Build is always under only your control. Other people will be 
able to tune your Package if it is left unlocked, but only you can sell an ECU that can use it. 

So, buy your Development ECU and you will be provided by MoTeC with all of the 
documentation, Licences and access to MoTeC online that you need to get developing. 



M1 BUILD TRAINING – JULY 2015 

Selling Your Package Dev ECU 

MoTeC have kept in mind your business, and realise that when you create your own custom 
Package, you will probably want to sell it to your customers. 

You can do this any time by purchasing another Development ECU, like your own, with your 
Licence in it. With that ECU, you can load into it anything built with your Licence. 

The Development Licence method of selling your Package gives the most flexibility in how quickly 
you can make a change in a customer’s ECU. That method also means that you can change your 
Package at any time. 



M1 BUILD TRAINING – JULY 2015 

Selling Your Package Partner 

The Development ECU method of selling your Package is the most flexible. But it is also means 
that the customer is paying the cost of a Development ECU each time, plus the cost of your 
Package to you. 

We understand that this may not be a cost effective way of getting your Project out to customers. 
In this instance, we offer a Partner Package option. 

A Partner Package is your own Package that we have rolled up into a finished version that can be 
purchased only by you at a lower price than a Development Licence. 



M1 BUILD TRAINING – JULY 2015 

Partner Package Pricing 

The price we charge for Partner Packages is controlled by a set of guidelines. For full details of the 
guidelines contact MoTeC. 

In summary it works like this: 

• If the Package has GPA features, you can buy it at your GPA price 

• If the Package has GPRP features, you can buy it at your GPRP price 
 

We only charge you for the features in your Package that we supply in the Public Build Projects. 

Whatever you add to these Packages yourself on top of this is yours to add your own charges. 
 

So to make a Project worthwhile, you need to add additional features to GPRP to be able to 
charge more for it and make it worthwhile for the customer. 


